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We consider a lattice of bosonic atoms, whose number N may be smaller than the number of lattice sites M.
We study the Hartree-Fock wave function built up from localized wave functions w�r� of single atoms, with
nearest-neighboring overlap. The zero-momentum particle number is expressed in terms of permanents of
matrices. In one dimension, it is analytically calculated to be �N�M −N+1� /M, with �= ��w�r�d��2 / ��1
+2a�l�, where a is the nearest-neighboring overlap and l is the lattice constant. � is on the order of 1. The
result indicates that the condensate fraction is proportional to and of the same order of magnitude as that of the
vacancy concentration, hence there is off-diagonal long-range order or Bose-Einstein condensation of atoms
when the number of vacancies M −N is a finite fraction of the number of the lattice sites M.
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I. INTRODUCTION

Supersolidity refers to the superfluidlike behavior of a
solid, in particular, the nonclassical rotational inertia �NCRI�
or missing moment of inertia, as a consequence of Bose-
Einstein condensation �BEC� or off-diagonal long-range or-
der �ODLRO�.1–4 A few years ago, Kim and Chan5 observed
NCRI in bulk solid 4He in torsional oscillators, which was
subsequently confirmed by several other experimental
groups.6–10 Heat capacity exhibits a peak near the onset of
NCRI.11 Superfluidlike mass flow was seen close to the melt-
ing temperature,12 and on melting curve,13 being carried by
liquid regions at the interface.14 Recently, it has also been
observed off the melting curve by injecting atoms from
superfluids.15 Increase in shear modulus was observed at low
temperatures16 but similar phenomenon in solid 3He is not
accompanied by NCRI, indicating that elastic stiffening
alone cannot produce NCRI.17

BEC of zero-point vacancies in the ground state of solid
Helium is the basis in some proposals of supersolidity
mechanism.18–20 Path integral Monte Carlo studies indeed
found that solid 4He is commensurate without BEC.21 It was
argued that zero-point vacancies or interstitials are necessary
for supersolidity.22 Analytical calculations based on insula-
torlike trial wave functions also showed that a commensurate
solid cannot be a supersolid.4,23–25 But on the other hand,
zero-point vacancies are found in variational studies using
Jastrow or Shadow wave function,26 vacancy-induced BEC
was also found by using shadow wave functions.27 A recent
diffusion Monte Carlo study of commensurate solid 4He us-
ing another trial wave function found a condensate fraction
�10−4 and a superfluid fraction �10−5.28

Vacancy-based mechanism was disfavored by some re-
searchers for the reasons that 4He is believed to be commen-
surate while the vacancies tend to be phase separated be-
cause of attraction.29–31 Nevertheless, the interaction between
vacancies may be more complicated.32 On the other hand,
disorders such as dislocations, grain boundary, and glassiness
indeed appear to be important.10,13,31,33–35 Grain boundaries
does not seem to be the fundamental origin of NCRI, which

has also been observed in large crystals.36 In considering
disorder or glassiness, there are theories combining this as-
pect with superfluidity,37–41 as well as theories without re-
sorting to superfluidity.42,43

With all these results, the issue whether the ground state
of solid 4He is commensurate or incommensurate and the
mechanism of NCRI in solid 4He are still open questions.44 It
is possible that intrinsic zero-point vacancy is the fundamen-
tal origin of supersolidity while assisted by the extrinsic dis-
orders. This possibility is consistent with the finding in simu-
lations that the gap for vacancy creation can be closed under
a moderate stress.45 Most recently, Anderson put forward a
Gross-Pitaevskii theory of dilute gas of vacancies to account
for the supersolidity, arguing that every pure Bose solid’s
ground state is a supersolid based on vacancies.46

As a theoretical approach shedding light on supersolid
mechanism, it is interesting to consider phenomenological
trial wave functions of a quantum solid and examine whether
they give rise to ODLRO and supersolidity. One of the trial
wave functions is metal-like, which is a product of copies of
the same extended single-atom wave function, each being a
superposition of localized wave functions at all lattice sites.
This is a BEC state, even in the case of a perfect crystal. First
studied in 1970s, this wave function suffers the shortcoming
that the probability amplitude of a configuration with one
particle on each site tends to vanish when N→�.24 Recently,
it was reconsidered with multiplication of Jastrow factors,
which suppress multiple occupancy in a same site.47 How-
ever, it still has the shortcoming that the equality between the
lattice site and the number of atoms is a coincidence.31 In the
trial wave function used in the recent diffusion Monte Carlo
study which found BEC,28 the single-particle part is replaced
as a product of wave functions on all lattice sites, each being
superposition of wave functions of all possible single occu-
pations of this site.

Another trial wave function is insulatorlike, with the
single-particle part being a symmetrized product of the local-
ized single-atom wave functions. There is no ODLRO in
such a wave function, even though there is wave function
overlap between nearest-neighboring atoms.23 The nonexist-
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ence of ODLRO was further proved in the cases that two
particles cannot come too close24 and that the sum of overlap
integrals of a single-atom wave function with its neighboring
ones is less than unity.25 Recently, the nonexistence of
ODLRO or NCRI was generally shown for the case that the
overlap between the neighboring atoms decays exponentially
or faster, with the decay constant much smaller than the sys-
tem size, with or without Jastrow factors.4

On the basis of the insulatorlike wave function, Imry and
Schwartz24 introduced vacancies in the case that there is no
overlap between single-atom local wave functions. They
found the zero-momentum particle number to be

N0 = N�M − N + 1�
�	 w�r�d��2

�
, �1�

where M is the number of total lattice sites, N is the number
of atoms, w�r� is the single-atom wave function, and � is the
volume. M 
Ld, �
Mld, where L is the number of atoms
on each side of the lattice, d is the dimension, and l is the
lattice constant.

But nearest-neighboring overlap is crucial in a quantum
solid. Moreover, there is some inconsistency in discussing
BEC under the assumption that there is no overlap between
neighboring atomic wave functions. If the overlap is zero,
��w�r�d��2 also becomes zero. Then Eq. �1� becomes not
useful, as N0=0. To see this clearly, one can fiducially as-
sume the single-atom wave function to be Gaussian, as in-
deed used in variational calculations of solid 4He,48,49 i.e.,

w�r� =
1

�����d/2exp�−
1

2
 r

�
�2� , �2�

where d is the dimension of the lattice. Then

�	 w�r�d��2

= �2����d. �3�

The nearest-neighboring overlap is

a =	 w�r�w�r − l�d� = exp�−
1

4
 l

�
�d� . �4�

Therefore the overlap a→0 means �→0 or �� l. But then
��w�r�d��2→0 or ��w�r�d��2 / ld�1. Therefore, it is indis-
pensable to consider nearest-neighboring overlap.

In this paper, we consider the Hartree-Fock wave function
of a quantum solid with vacancies in presence of nearest-
neighboring overlap of single-atom wave functions. We ob-
tain an analytical expression for the zero-momentum particle
number N0, in terms of permanents of matrices. This expres-
sion formally reduces to Eq. �1� if the nearest-neighboring
overlap integral a is set to be 0. We have made the analytical
calculation of N0 in one dimension. Our result on N0 indi-
cates that there is ODLRO when the number of vacancies is
a finite fraction of the number of lattice sites, in presence of
nearest-neighboring overlap between single-atom wave func-
tions.

The rest of this paper is organized as follows. In Sec. II,
we consider the Hartree-Fock wave function for a quantum

solid with vacancies, constructed in terms of localized
single-atom wave functions. We obtain the analytical expres-
sion for the zero-momentum particle number, which is ex-
pressed in terms of the permanents of matrices. In Sec. III,
we make a calculation in the case that the overlap integral
between neighboring atoms is zero, reproducing the formula
obtained by Imry and Schwartz. In Sec. III, we make the
calculation for the case that the overlap integral is nonzero.
Part of the mathematical derivation is presented in the ap-
pendix. The summary and discussions are made in Sec. IV.

II. TRIAL WAVE FUNCTION AND THE EXPRESSION
FOR ZERO-MOMENTUM PARTICLE NUMBER IN TERMS

OF PERMANENTS OF MATRICES

We consider the following Hartree-Fock wave function of
a bosonic solid with vacancies:

��r1 ¯ rN� = A�
I

�
PI

�
i=1

N

w�ri − PI�Ri�� , �5�

where w is the localized single-atom wave function, which is
real and nonnegative, I represents a selection of N sites
�RI1

¯RIN
� from the total M sites, PI represents the N! per-

mutations of these selected N sites, the summation over I
represents M ! /N ! �M −N�! different choices of the N sites.
The normalization constant A is obtained as

A−2 = �
I

�
I�

�
PI

�
PI�

�
i

Q�PI�RIi
� − PI��RIi�

�� , �6�

where

Q�R − R�� � 	 w�r − R�w�r − R��d� . �7�

In our consideration,

Q�R − R�� = �1: if R − R� = 0,

a: if �R − R�� = l ,

0: if �R − R�� 	 l .
� �8�

A−2 can be rewritten as

A−2 = N ! �
I

�
I�

P�
�I,I��� , �9�

where P�
�I , I��� is the permanent of an N�N submatrix

�I , I�� of the M �M matrix Q, whose elements are

Qij � Q�Ri − R j� ,

where Ri and R j run over all the lattice sites. The submatrix

�I , I�� is formed by choosing, from Q, N rows according to
the set I and N columns according to the set I�.

The permanent of an N�N matrix 
 is defined as

P�
� = �
i1¯iN

�i1¯iN
1i1
¯ 
NiN

, �10�

where �i1¯iN =1 when every two indices are different from
each other, otherwise �i1¯iN =0. In other words, a permanent
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is like a determinant, except that all the terms in the expan-
sion are positive, rather than with a sign alternation.

In this paper, the calculation is limited to a one-
dimensional lattice. The lattice sites are numbered from left
to right as 1 ,2 , . . . ,M. Q is trigonal with Qii=1, Qi,i+1
=Qi+1,i=a while the other elements are 0. Therefore Q is

Q = AM ,

here we introduce a square matrix An, n being a positive
integer, written schematically as

An ��
1 a 0 0 0 0 0 0 0 0

a 1 a 0 0 0 0 0 0 0

0 a 1 a 0 0 0 0 0 0

0 0 a 1 a 0 0 0 0 0

0 0 0 a � � 0 0 0 0

0 0 0 0 a � � 0 0 0

0 0 0 0 0 a 1 a 0 0

0 0 0 0 0 0 a 1 a 0

0 0 0 0 0 0 0 a 1 a

0 0 0 0 0 0 0 0 a 1

�
n�n

, �11�

where the subscript n�n indicates that it is an n�n matrix.
For the many-body trial wave function �Eq. �5��, the one-

particle reduced density matrix is

�r,r�� = N	 ��r,r2, . . . ,rN���r�,r2, . . . ,rN�d�2 ¯ d�N

= NA2�
I

�
I�

�
PI

�
PI�

w�r − PI�RI1
��

�w�r� − PI��RI1�
���

i�1
Q�PI�RIi

� − PI��RIi�
��

= A2N ! �
I

�
I�

�
i�I,j�I�

w�r − R̃i�w�r� − R̃ j�Wij , �12�

where the summation over i and j run over the rows and

columns of submatrix 
�I , I��, R̃i� PI�RI1
�, and R̃ j

� PI��RI1�
�, for which Q�R̃i− R̃ j� is just the �i , j�th element


ij of the submatrix 
�I , I��, Wij is the minor of 
ij. Here the
minor Wij of 
ij is defined as the permanent of the submatrix
of 
 obtained by removing the ith row and the jth column.

The number of particles at the zero-momentum state is
thus

N0 =
1

�
	 �r,r��d�d�� =

XN�Q�
YN�Q�

�	 w�r�d��2

�
, �13�

where

XN�Q� � �
I

�
I�

�
i�I,j�I�

Wij , �14�

YN�Q� � �
I

�
I�

P�
�I,I��� . �15�

XN�Q� is the summation of the permanents of the minors of
all the elements of all the N�N submatrices 
’s of Q.
YN�Q� is the summation of the permanents of all the N�N
submatrices 
’s of Q.

III. CASE WITHOUT NEAREST-NEIGHBORING
OVERLAP

First let us reconsider the case without overlap between
neighboring single-atom wave functions, i.e., a=0 and show
that Eq. �13� formally reduces to Eq. �1�.

In this case,

Q = IM ,

where IM represents the M �M unit matrix. Thus in obtain-
ing a submatrix 
�I , I��, once N rows are chosen, there is
only one choice of N columns to give rise to a nonvanishing
permanent. Namely, the ordering numbers, in the parent ma-
trix IM, of the chosen columns must be equal to those of the
chosen rows, i.e., 
�I , I�� must be a unit matrix in order to
have nonvanishing permanent. Consequently,

YN�IM� =
M!

N ! �M − N�!
, �16�

which is just the number of ways of choosing N rows. Note
that the order of the chosen rows and the order of the chosen
columns both remain the same as in the parent matrix.

In order to calculate XN�IM�, we need to find out all non-
zero minors for all submatrices 
’s of IM. Note that P�
�
=0 does not mean 
 has no nonzero minors. Given that the
parent matrix is a unit matrix IM, in order that 
 has one or
more nonzero minors, 
 must be either a unit matrix IN or
diagonal with only one “0” diagonal element. In the former
case, there are M ! /N ! �M −N�! ways of making up the unit
submatrix 
=IN, which has N nonzero minors, each equal to
1. In the latter case, one first choose N−1 rows and N−1
columns, with the same ordering numbers in the parent ma-
trix IN, to make up N−1 diagonal elements “1.” The number
of ways of doing this is M ! / �N−1� ! �M −N+1�!. To choose
the remaining one row and one column, their ordering num-
bers in the parent matrix IN must be different, such that the
remaining diagonal element in 
 is “0.” The number of ways
of doing this is �M −N+1��M −N�. Each 
 so obtained only
has one nonzero minor, which is equal to 1. Therefore,

XN�IM� =
M!

N ! �M − N�!
N

+
M!

�N − 1� ! �M − N + 1�!
�M − N��M − N + 1�

=
M!

N ! �M − N�!
N�M − N + 1� . �17�

Substituting Eqs. �16� and �17� into Eq. �13� indeed re-
covers Eq. �1�.
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IV. CASE WITH NEAREST-NEIGHBORING OVERLAP

With nearest-neighboring overlap, the zero-momentum
particle number is

N0 =
XN�AM�
YN�AM�

��w�r�d��2

�
, �18�

where the matrix AM is as defined in Eq. �11�.
For an arbitrary matrix Sm�n, we introduce Yk�Sm�n� and

Xk�Sm�n�, with k�min�m ,n�. Yk�Sm�n� is the sum of the
permanents of all the k�k submatrices of Sm�n. Xk�Sm�n� is
the sum of the permanents of all the minors of all the k�k
submatrices of Sm�n.

First, we note the existence of the relation

Xk�An� = �n − k + 1�2Yk−1�An� �19�

for the following reason. Every minor of a k�k submatrix of
An is in fact a �k−1�� �k−1� submatrix of An while a �k
−1�� �k−1� submatrix is a minor of many different k�k
submatrices. For a given �k−1�� �k−1� submatrix of An, one
can add an additional row and an additional column of the
An, making up a k�k submatrix of An, of which the con-
cerned �k−1�� �k−1� submatrix of An is a minor. There are
�n−k+1�2 ways to do this. Hence a �k−1�� �k−1� submatrix
is a minor of �n−k+1�2 different k�k submatrices of An,
thus we obtain the relation �19�.

Therefore,

Xk�An�
Yk�An�

=
�n − k + 1�2Yk−1�An�

Yk�An�
. �20�

In Appendix A, we obtain that for n�2,

Y2�An� = �1 + 2a�2n�n − 1�
2

− �5a2 + 4a�n + 7a2 + 4a

= �1 + 2a�2n�n − 1�
2!

�1 + O1

n
�� , �21�

where O�1 /n� represents a term on the order of 1 /n.
In Appendix B, we obtain that for any 3�k�n,

Yk�An� = �
l=k−1

n−1

Yk−1�Al� + 2�
s=1

k−2

as �
l=k−s

n−s−1

Yk−s�Al�

+ a2 �
l=k−2

n−2

Yk−2�Al� + �1 + 2a�2ak−1�n − k��n − k + 1� .

�22�

From this relation, we know that Yk�An�	Yk−1�An−1�,
Yk−1�An−1� being merely one term in the first summation in
right-hand side �RHS� of Eq. �22�. Consequently, in the sum-
mation over s, 2�l=k−s

n−s−1Yk−s�Al�, which also depends on a, by
which as is multiplied, decreases with the increase in s. Since
a�1, RHS of Eq. �22� converges with respect to a. Also
note that the last term is of the power of ak−1.

Therefore, Yk�An� can be written as

Yk�An� = � �
l=k−1

n−1

Yk−1�Al� + 2a �
l=k−1

n−2

Yk−1�Al���1 + O��a��

= ��1 + 2a� �
l=k−1

n−1

Yk−1�Al� − 2aYk−1�An−1���1 + O��a�� ,

�23�

where O��a� denotes a term at most on the order of a.
In the following, we show by induction that

Yk�An� = �1 + 2a�k n!

k ! �n − k�!
�1 + O��a�� . �24�

Suppose that the similar identity is valid for Yk−1�Al�, with
k−1� l�n, i.e.,

Yk−1�Al� = �1 + 2a�k−1 l!

�k − 1� ! �l − k + 1�!
�1 + O��a�� .

�25�

Then

�1 + 2a� �
l=k−1

n−1

Yk−1�Al�

=
�1 + 2a�k

�k − 1�! �
l=k−1

n−1
l!

�l − k + 1�!
�1 + O��a�� . �26�

Using the identity50

�
j=1

p

j�j + 1� ¯ �j + q� =
1

q + 2

�p + q + 1�!
�p − 1�!

, �27�

we obtain

�
l=k−1

n−1
l!

�l − k + 1�!
=

1

k

n!

�n − k�!
, �28�

Hence Eq. �26� becomes

�1 + 2a� �
l=k−1

n−1

Yk−1�Al� = �1 + 2a�k n!

k ! �n − k�!
�1 + O��a�� .

�29�

On the other hand, according to the assumption �Eq. �25��
and the above result �Eq. �29��, we have

2aYk−1�An−1� = 2a�1 + 2a�k−1 �n − 1�!
�k − 1� ! �n − k�!

�1 + O��a��

=
2a

1 + 2a

k

n��1 + 2a� �
l=k−1

n−1

Yk−1�Al���1 + O��a��

= O�a�
k

n
�

l=k−1

n−1

Yk−1�Al� , �30�

where k /n�1.
Substituting Eqs. �29� and �30� into Eq. �23� yields Eq.

�24�, hence the proof completes.
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Then we substitute the proved identity �Eq. �24�� into Eq.
�20�, obtaining

Xk�An�
Yk�An�



k�n − k + 1�

1 + 2a
, �31�

if a�1.
Therefore, according to Eq. �18�, the zero-momentum par-

ticle number is

N0 

N�M − N + 1�

1 + 2a

�	 w�r�d��2

�
. �32�

This identity formally reduces to that obtained by Imry and
Schwartz long ago when we set a=0. But ��w�r�d��2�0
only if a�0.

On the other hand, in case n�k, no matter whether a
�1, we can also obtain the identity �Eq. �31�� and thus the
result �Eq. �32��. This condition does not correspond to the
physical situation concerning solid 4He, as that would mean
most of the lattice sites are empty. For completeness, we give
the mathematical proof for this case in Appendix C.

V. SUMMARY AND DISCUSSIONS

To summarize, we have studied the Hartree-Fock wave
function of a lattice of atoms with N�M, where M and N
are the numbers of lattice sites and atoms, respectively. The
Hartree-Fock wave function is constructed in terms of local-
ized wave functions of single atoms, with nearest-
neighboring overlap.

In one dimension, under this wave function, we have ob-
tained the zero-momentum particle number as given in Eq.
�32�, which can be rewritten as

N0 = �
N�M − N + 1�

M
, �33�

where

� =

�	 w�r�d��2

�1 + 2a�l
�34�

is a finite fraction on the order of 1.
To be specific, let us again use the Gaussian wave func-

tion for w�r�, as given in Eq. �2�. Then in one dimension,

� =

2��
�

l

�1 + 2 exp−
1

4
 l

�
�2�� , �35�

which is on the order of 1 when � / l is a finite fraction around
0.36, which is obtained from the Lindemann ratio �
0.29
for solid 4He,49 using ����r2� / l=�3 /2� / l under the Gauss-
ian wave function �Eq. �2��. For d=3, 1 / �1+2a� should be
replaced by another function f��� of �, which should still be
on the order of 1. Anyway, �= �2��� / l�3f��� must be on the
order of 1.

Therefore there is BEC of atoms, i.e., N0 is a finite frac-
tion of N, when the number of vacancies M −N is a finite
fraction of the number of lattice sites M. This condition also
implies that the number of atoms N is a finite fraction of M.

Interestingly, the condensate fraction N0 /N is proportional
to and on the order of vacancy concentration �M −N� /M,

N0

N
= �

M − N

M
. �36�

Currently, the experimental upper bound of vacancy concen-
tration is about 0.4%.26 Hence a Hartree-Fock wave function
for a solid with zero-point vacancy implies that the conden-
sate fraction is about 0.004�, which is very reasonable.

Moreover, for such low vacancy concentration, one has

N0

M − N

 � , �37�

i.e., � equals the number of condensed atoms per vacancy.
This is well consistent with the result of variational simula-
tion based on Shadow wave function, which gives 0.23 con-
densed atoms per vacancy at 54 bar.27

The Hartree-Fock wave function could be the ground state
of a mean-field theory. Although it is not multiplied by the
Jastrow factor, the double occupancy is excluded by con-
struction. Our calculation is done for one dimension. In three
dimensions, there should not be qualitative difference in or-
der of magnitude from the result for one dimension. Hence
our result is qualitatively informative for solid 4He, suggest-
ing that its supersolidity based on BEC of atoms induced by
zero-point vacancy is possible.
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APPENDIX A: Y2(An)

Here we calculate Y2�An� �n�2�, i.e., the sum of the per-
manents of all the 2�2 submatrices of An.

In addition to the definition of An as given in Eq. �11�, we
shall also use matrices

Bn−1 ��
a a 0 0 0 0 0 0 0

0 1 a 0 0 0 0 0 0

0 a 1 a 0 0 0 0 0

0 0 a 1 a 0 0 0 0

0 0 0 � � 0 0 0 0

0 0 0 0 � � a 0 0

0 0 0 0 0 a 1 a 0

0 0 0 0 0 0 a 1 a

0 0 0 0 0 0 0 a 1

�
�n−1���n−1�

,

�A1�
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C�n−2���n−1� � �
a 1 a 0 0 0 0 0 0

0 a 1 a 0 0 0 0 0

0 0 a 1 a 0 0 0 0

0 0 0 a 1 a 0 0 0

0 0 0 � � 0 0 0 0

0 0 0 0 � � 1 a 0

0 0 0 0 0 0 a 1 a

0 0 0 0 0 0 0 a 1

�
�n−2���n−1�

.

�A2�

The permanent of an n�n matrix S is equal to

P�S� = �
j

SijWij , �A3�

where Wij is the minor of the Sij. Using this property, we can
expand Y2�An� as

Y2�An� � Y2�
1 a 0 0 0 0 0 0 0 0

a 1 a 0 0 0 0 0 0 0

0 a 1 a 0 0 0 0 0 0

0 0 a 1 a 0 0 0 0 0

0 0 0 a � � 0 0 0 0

0 0 0 0 a � � 0 0 0

0 0 0 0 0 a 1 a 0 0

0 0 0 0 0 0 a 1 a 0

0 0 0 0 0 0 0 a 1 a

0 0 0 0 0 0 0 0 a 1

�
n�n

= Y1�An−1� + aY1�B�n−1���n−1��

+ aY1�C�n−2���n−1�� + Y2�An−1�

= Y2�An−1� + Y1�An−1� + 2aY1�An−2� + 3a2, �A4�

where we have used Y1�B�n−1���n−1��=2a+Y1�An−2� and
Y1�C�n−2���n−1��=a+Y1�An−2�, which are straightforward.

In this way, we obtain the following set of identities:

Y2�An� − Y2�An−1� = Y1�An−1� + 2aY1�A�n−2�� + 3a2,

Y2�An−1� − Y2�An−2� = Y1�An−2� + 2aY1�A�n−3�� + 3a2,

]

Y2�A3� − Y2�A2� = Y1�A2� + 2aY1�A1� + 3a2. �A5�

Adding these identities together gives rise to

Y2�An� − Y2�A2� = Y1�An−1� + �1 + 2a��
j=2

n−2

Y1�Aj�

+ 2aY1�A1� + 3a2�n − 2� . �A6�

Clearly Y2�A2�=1+a2 and Y1�Aj�= j+2�j−1�a. Hence it can
be obtained that

Y2�An� = �1 + 2a�2n�n − 1�
2

− �5a2 + 4a�n + 7a2 + 4a ,

�A7�

which is also satisfied when n=2, as Y2�A2�=1+a2.

APPENDIX B: Yk(An)

We now calculate Yk�An� for 3�k�n, in a way similar to
the calculation of Y2�An� above.

Similar to Eq. �A4�, we obtain

Yk�An� � Yk�
1 a 0 0 0 0 0 0 0 0

a 1 a 0 0 0 0 0 0 0

0 a 1 a 0 0 0 0 0 0

0 0 a 1 a 0 0 0 0 0

0 0 0 a � � 0 0 0 0

0 0 0 0 a � � 0 0 0

0 0 0 0 0 a 1 a 0 0

0 0 0 0 0 0 a 1 a 0

0 0 0 0 0 0 0 a 1 a

0 0 0 0 0 0 0 0 a 1

�
n�n

= Yk−1�An−1� + aYk−1�B�n−1���n−1��

+ aYk−1�C�n−2���n−1�� + Yk�An−1� . �B1�

Expansion of Yk−1�B�n−1���n−1�� gives

Yk−1�B�n−1���n−1�� = aYk−2�Ak−2� + Yk−1�C�n−1���n−2�
T � .

�B2�

For any matrix S, Yk−1�ST�=Yk−1�S�. Hence we have

Yk�An� = Yk�An−1� + Yk−1�An−1� + a2Yk−2�An−2�

+ 2aYk−1�C�n−2���n−1�� . �B3�

Iterative expansion of Yk−1�C�n−2���n−1�� yields

Yk−1�C�n−2���n−1�� = Yk−1�An−2� + aYk−2�C�n−3���n−2�� = ¯

= �
s=1

k−2

as−1Yk−s�An−s−1� + ak−2Y1�C�n−k���n−k+1�� , �B4�

where Y1�C�n−k���n−k+1��= �n−k�+a+2�n−k−1�a.
Therefore,

Yk�An� − Yk�An−1� = Yk−1�An−1� + a2Yk−2�An−2�

+ 2aYk−1�C�n−2���n−1��

= Yk−1�An−1� + a2Yk−2�An−2� + 2�
s=1

k−2

asYk−s�An−s−1�

+ 2ak−1��n − k� + a + 2�n − k − 1�a� . �B5�

Hence

Yk�An� − Yk�An−1� = Yk−1�An−1� + a2Yk−2�An−2�

+ 2�
s=1

k−2

asYk−s�An−s−1� + 2ak−1�a + �n − k� + 2�n − k − 1�a� ,
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Yk�An−1� − Yk�An−2� = Yk−1�An−2� + a2Yk−2�An−3�

+ 2�
s=1

k−2

asYk−s�An−s−2�

+ 2ak−1�a + �n − 1 − k� + 2�n − k − 2�a� ,

]

Yk�Ak+2� − Yk�Ak+1� = Yk−1�Ak+1� + a2Yk−2�Ak�

+ 2�
s=1

k−2

asYk−s�Ak+1−s� + 2ak−1��a + 2 + 2a�� ,

Yk�Ak+1� − Yk�Ak� = Yk−1�Ak� + a2Yk−2�Ak−1�

+ 2�
i=1

k−2

asYk−s�Ak−s� + 2ak−1��a + 1�� . �B6�

Adding these identities together leads to

Yk�An� − Yk�Ak� = �
l=k

n−1

Yk−1�Al� + a2 �
l=k−1

n−2

Yk−2�Al�

+ 2�
s=1

k−2

as �
l=k−s

n−s−1

Yk−s�Al�

+ 2ak−1 �
s=0

n−k−1

�a + �n − k − s� + 2�n − k − 1 − s�a� .

�B7�

Since Ym�An� exists only when m�n, we have

Yk�Ak� = Yk−1�Ak−1� + a2Yk−2�Ak−2� . �B8�

Therefore,

Yk�An� = �
l=k−1

n−1

Yk−1�Al� + 2�
s=1

k−2

as �
l=k−s

n−s−1

Yk−s�Al�

+ a2 �
l=k−2

n−2

Yk−2�Al� + �1 + 2a�2ak−1�n − k��n − k + 1� .

�B9�

APPENDIX C: CALCULATION OF N0 IN THE CASE OF
nšk

Here we show that the identity �Eq. �31�� and thus the
result �Eq. �32�� are also valid if n�k, no matter whether
a�1 or not. Mathematically, n�k means n→� while k re-
mains finite.

In the following, we show by induction that

Yk�An� = �1 + 2a�k n!

k ! �n − k�!�1 + O�a�O1

n
�� . �C1�

Suppose that the similar identity is valid for Yk−s�Al�, with
s�1 and k−s� l�n, i.e.,

Yk−s�Al� = �1 + 2a�k−s l!

�k − s� ! �l − k + s�!�1 + O�a�O1

l
�� .

�C2�

In the second term in the exact identity �Eq. �B9�� for
Yk�An�, 2as is multiplied by �l=k−s

n−s−1Yk−s�Al�, which can be
evaluated by using the assumption �Eq. �C2�� to be

�
l=k−s

n−s−1

Yk−s�Al� =
�1 + 2a�k−s

�k − s�! �
l=k−s

n−s−1
l!

�l − k + s�!�1 + O�a�O1

l
�� =

�1 + 2a�k−s

�k − s + 1�!
�n − s�!

�n − k − 1�!

= � �
l=k−1

n−2

Yk−1�Al�� �k − 2� ¯ �k − s + 1�
�1 + 2a�s−1

1

�n − 1� ¯ �n − s + 1�
, �C3�

where we have used the identity �Eq. �27��.
In the third term in Eq. �B9�, 2a2 is multiplied by

�l=k−2
n−2 Yk−2�Al�, which can be similarly evaluated to be

�
l=k−2

n−2

Yk−2�Al� =
�1 + 2a�k−2

�k − 2�! �
l=k−2

n−2
l!

�l − k + 2�!�1 + O�a�O1

l
��

=
�1 + 2a�k−2

�k − 1�!
�n − 1�!
�n − k�!

= � �
l=k−1

n−2

Yk−1�Al�� k

�1 + 2a�
1

�n − k�
, �C4�

where we have also used the identity �Eq. �27��.
Besides, the last term in Eq. �B9� is O�ak−1�O�n2�

�Yk−1�An−1�=O�nk� if k�n.
Therefore,

Yk�An� = � �
l=k−1

n−1

Yk−1�Al� + 2a �
l=k−1

n−2

Yk−1�Al��
��1 + O�a�O1

n
�� , �C5�

where O�1 /n��1, O�a� is on the order of a, which we do
not need to specify.
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Using the assumption �Eq. �C2�� for s=1, we obtain

�1 + 2a� �
l=k−1

n−1

Yk−1�Al�

= �1 + 2a�k �
l=k−1

n−1
l!

�k − 1� ! �l − k + 1�!�1 + O1

l
��

=
�1 + 2a�k

�k − 1�!
�F + O�G�� , �C6�

where

F = �
l=k−1

n−1
l!

�l − k + 1�!
, �C7�

G = �
l=k−1

n−1
�l − 1�!

�l − k + 1�!
. �C8�

Using the identity �Eq. �27��, we obtain

F =
1

k

n!

�n − k�!
, �C9�

G =
1

k − 1

�n − 1�!
�n − k�!

. �C10�

Hence Eq. �C6� becomes

�1 + 2a� �
l=k−1

n−1

Yk−1�Al� =
�1 + 2a�k

k!

n!

�n − k�!�1 + O�a�O1

n
�� .

�C11�

On the other hand, according to Eqs. �C2� and �C11�,

2aYk−1�An−1� =
2a�1 + 2a�k−1

�k − 1�!
�n − 1�!
�n − k�!�1 + O�a�O1

n
��

=
2a

1 + 2a

k

n��1 + 2a� �
l=k−1

n−1

Yk−1�Al��
= ��1 + 2a� �

l=k−1

n−1

Yk−1�Al��O�a�O1

n
�

�C12�

for the reason that k�n.
Therefore,

�
l=k−1

n−1

Yk−1�Al� + 2a �
l=k−1

n−2

Yk−1�Al�

= �1 + 2a� �
l=k−1

n−1

Yk−1�Al� − 2aYk−1�An−1�

= �1 + 2a� �
l=k−1

n−1

Yk−1�Al��1 + O�a�O1

n
�� . �C13�

By using Eqs. �C11� and �C13�, Eq. �C5� leads to the
identity �Eq. �C1��, which is thus proved. Substituting this
proved identity into Eq. �20�, we obtain Eq. �31� and thus
also Eq. �32�.
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